y groningen institute for evolutionary life sciences

faculty of science and engineering

university of groningen

The constant change of viruses – evolutionary biology in action

Sebastian Lequime (Assistant professor) s.j.j.lequime@rug.nl

Name viruses you know.

What do you associate with viruses?

Outline

Outline

"A virus is a piece of (**bad**) **news** wrapped in **protein**". – Peter Medawar (Nobel Prize 1960)

"Viruses appear to be obligate parasites in the sense that their reproduction is dependent on living cells".

- Thomas Milton Rivers (1926)

Viruses are passive agents! – Vincent Racaniello (at least 2012)

(~ computer program tuned by evolution)

Abundance

All three domain of life have been found infected by viruses

For example, marine viruses:

10³⁰ viruses in the entire marine biota (estimate)
10²³ viral infections every second (estimate)
Viruses kill about 20% of the total microbial biomass every day forcing a constant and large-scale turnover

Suttle 2005 Nature https://www.nature.com/articles/ nature04160

Wietz et al 2017 Nature https://www.nature.com/articles/ nature23295

Abundance

Gray whale ~ 10⁶ calicivirus per gram of feces

Excretes 10¹³ (10,000,000,000) viral particles every day

Smith et al. 1998 EID https://dx doi.org/10.3201%2Feid0401.980103

Viruses are part of all microbiomes

Infecting directly the host (*e.g.* Herpesviruses)

Infecting other members of the microbiome

Liang & Bushman 2021 Nature Rev Microbiol https://doi.org/10.1038/s41579-021-00536-5

a 'Virus early' hypothesis

Modern cell

Theory 1: Viruses predate cells

Theory 2: Viruses do not predate cells

Krupovic et al. 2019 Nature Rev. Microbiol https://www.nature.com/articles/s41579-019-0205-6

What could be the impact(s) of viruses? (some are evident, some are deep, all are important)

All scales of life are affected by viruses

Required for the life cycles of several insects (e.g. parasitoids)

Marine viruses drive large-scale turnover of

Case study in weirdness: Yaravirus

Collection of muddy water from creeks of an artificial urban lake in Belo Horizonte, Brazil

Inoculation of water samples on cultures of amoeba

New virus! Yaravirus brasiliensis

(Yara = the mother of water in Tupi-Guarani mythology)

dsDNA ~45 kb 74 predicted proteins

Only six genes have distant homologs in public databases. The rest is unknown.

Boratto et al 2020 PNAS https://doi.org/10.1073/pnas.2001637117

Mutualists!

Yellowstone plant needs to be associated with a fungus itself infected with a virus to survive hot soils

Marquez et al. (2007) Science

Pf phages promote *P. aeruginosa* survival in harsh environments:

- decoy for the host immune system by triggering an antiviral response
- promotes antibiotic tolerance of P. aeruginosa by selfassembling into higher-order liquid crystalline structures

Viruses...

...are everywhere... •

...and at the foundation of life

@brgfx (<u>https://www.freepik.com/brofx</u>) & Michelle Yun https://www.quantamagazine.org/scientists-discover-nearly-200000-kinds-of-ocean-viruses-20190425/

Outline

SARS-CoV-2

Betacoronavirus

Betacoronavirus

Diverse sets of hosts (mammalians)

Outline

Central dogma of molecular biology

RdRP is error-prone

DNA polymerase: 10⁻⁷ to 10⁻⁹ error/nt replicated

RNA-dependent-RNA-Polymerase: 10⁻³ to 10⁻⁵ error/nt replicated lack of proofreading ability in RNA polymerases

Virus mutation rate

Gago et al. 2009 Science https://doi.org/10.1126/science.1169202

SARS-CoV-2's RdRP is slightly less error-prone

Proof reading activity!

Between-host evolution

Viral population is shaped by:

Bottleneck,

Immune response,

~ It's a complex mess.

Host genetic background & physiology,

Environment...

Other mechanisms of virus evolution

Recombination

Reassortment

Virus mutation rate

Gago et al. 2009 Science https://doi.org/10.1126/science.1169202

Constraints on virus evolution

Gago et al. 2009 Science https://doi.org/10.1126/science.1169202 Holmes 2011 J. Virol. https://doi.org/10.1128/jvi.02203-10

Constraints on virus evolution

Gago et al. 2009 Science https://doi.org/10.1126/science.1169202 Holmes 2011 J. Virol. https://doi.org/10.1128/jvi.02203-10

Evolutionary biologists use the word fitness to describe how good a particular genotype is at leaving offspring in the next generation relative to other genotypes

children grandchildren

Of course, fitness is a relative thing.

What would be fitness for viruses?

Fitness of viruses

Outline

Understanding the trajectory of SARS-CoV-2

Genetic changes (can) trigger/follow epidemiological change

Antia et al. 2003 Nature https://doi.org/10.1038/nature02104

Wolfe et al. Nature 2007 https://doi.org/10.1038/nature05775 Pike et al. CID 2010 https://doi.org/10.1086/652860

Virus-host interaction

May take some time!

Transmission and emergence

"R nought" or "R zero"

Reproduction number (in an idealized, naïve population) R_t Effective reproduction number (takes into account immunity, etc)

<u>average</u> number of people who will contract the disease from <u>one</u> infected person

$$R_0 < 1$$
 $R_0 = 1$ $R_0 > 1$

Decline, eventually dies out

Maintenance, endemicity

Epidemic

Do you know which pathogen has (usually) the highest R_0 ?

Transmission and emergence

It is also dynamics; changes in the virus or else can change R_0

SARS-CoV-2 variants

https://nextstrain.org/ncov/gisaid/global/6m

It's just a mild flu...

$\mathsf{Future} \, \mathsf{of} \, \mathsf{COVID}$

more virulent...

...less chance for transmission rchooo!!! ...more chance for transmission

less virulent...

https://evolution.berkeley.edu/evo-news/evolution-from-a-viruss-view/

Eradicating SARS-CoV-2

Eradication of infectious diseases

Which characteristics should an infectious disease have to be, potentially, eradicated?

Eradication of infectious diseases

Virevo tinyurl.com/virevo