y groningen institute for evolutionary life sciences

faculty of science and engineering

university of groningen

The constant change of viruses – evolutionary biology in action

Sebastian Lequime (Assistant professor) s.j.j.lequime@rug.nl

Outline

Outline

"A virus is a piece of (**bad**) **news** wrapped in **protein**". – Peter Medawar (Nobel Prize 1960)

"Viruses appear to be obligate parasites in the sense that their reproduction is dependent on living cells".

- Thomas Milton Rivers (1926)

Viruses are passive agents! – Vincent Racaniello (at least 2012)

(~ computer program tuned by evolution)

https://viralzone.expasy.org/

Abundance

All three domain of life have been found infected by viruses

For example, marine viruses:

10³⁰ viruses in the entire marine biota (estimate)
10²³ viral infections every second (estimate)
Viruses kill about 20% of the total microbial biomass every day forcing a constant and large-scale turnover

Suttle 2005 Nature https://www.nature.com/articles/ nature04160

Wietz et al 2017 Nature https://www.nature.com/articles/ nature23295

Abundance

Gray whale ~ 10⁶ calicivirus per gram of feces

Excretes 10¹³ (10,000,000,000) viral particles every day

Smith et al. 1998 EID https://dx doi.org/10.3201%2Feid0401.980103

Abundance

Viruses are part of any microbiome

Infecting directly the host (e.g. Herpesviruses)

Infecting other members of the microbiome

Popgeorgiev et al. 2013 Intervirology https://doi.org/10.1159/000354561

Viruses...

...are everywhere

- Especially when you study biology :
- Molecular biology
- Cell biology
- Genetics
- Ecology
- Evolution
- Medical sciences (diseases and treatments)
- Biochemistry
- Epidemiology
- Computational biology

@brgfx (<u>https://www.feepik.com/brofx</u>) & Michelle Yun https://www.quantamagazine.org/scientists-discover-nearly-200000-kinds-of-ocean-viruses-20190425/

Outline

SARS-CoV-2

Betacoronavirus

SARS-CoV-2

Betacoronavirus

Diverse sets of hosts (mammalians)

Outline

Central dogma of molecular biology

RdRP is error-prone

DNA polymerase: 10⁻⁷ to 10⁻⁹ error/nt replicated

RdRP: 10⁻³ to 10⁻⁵ error/nt replicated

lack of proofreading ability in RNA polymerases

Virus mutation rate

Gago et al. 2009 Science https://doi.org/10.1126/science.1169202

SARS-CoV-2's RdRP is slightly less error-prone

Proof reading activity!

Within-host evolution

Between-host evolution

Viral population is shaped by:

Bottleneck,

Immune response,

~ It's a complex mess.

Host genetic background & physiology,

Environment...

Other mechanisms of virus evolution

Recombination

Reassortment

Virus mutation rate

Gago et al. 2009 Science https://doi.org/10.1126/science.1169202

Constraints on virus evolution

Gago et al. 2009 Science https://doi.org/10.1126/science.1169202 Holmes 2011 J. Virol. https://doi.org/10.1128/jvi.02203-10

Evolutionary biologists use the word fitness to describe how good a particular genotype is at leaving offspring in the next generation relative to other genotypes

Of course, fitness is a relative thing.

Fitness of viruses

Outline

Why study virus evolution?

For what it tells us

Insights into their epidemiology

Understanding the trajectory of SARS-CoV-2

Genetic changes (can) trigger/follow epidemiological change

Antia et al. 2003 Nature https://doi.org/10.1038/nature02104

Wolfe et al. Nature 2007 https://doi.org/10.1038/nature05775 Pike et al. CID 2010 https://doi.org/10.1086/652860

Virus-host interaction

May take some time!

Transmission and emergence

"R nought" or "R zero"

Reproduction number (in an idealized, naïve population) R_t Effective reproduction number (takes into account immunity, etc)

average number of people who will contract the disease from one infected person

$$R_0 < 1$$
 $R_0 = 1$ $R_0 > 1$

Decline, eventually dies out

Maintenance, endemicity

Epidemic

Transmission and emergence

Michaeleen Doucleff, Alyson Hurt and Adam Cole/NPR, link

It is also dynamics; changes in the virus or else can change R_0

SARS-CoV-2 variants

https://nextstrain.org/ncov/gisaid/global/6m

SARS-CoV-2 variants

It's just a mild flu...

$\mathsf{Future} \, \mathsf{of} \, \mathsf{COVID}$

more virulent...

...less chance for transmission less virulent... achooo!!!! ...more chance for transmission

https://evolution.berkeley.edu/evo-news/evolution-from-a-viruss-view/

Why is it hard to treat viral infections?

Why so few antivirals?

Reason 1Inhibiting virus growth can affect the host cellVirus replication engages host functionSide effects

Reason 2 Difficult to grow or have an animal model (or dangerous)

Reason 3 A compound must block virus replication <u>completely</u> Partial inhibition is not acceptable

Acute infections are short

When patient feels ill, usually too late

Antivirals for these infections must be given early or prophylactically

But safety issues? Giving drugs to healthy people? One counter example though?

Resistance to ANY antiviral drug must be anticipated

Special concern for chronic infection

Patient cannot be treated with the same drug

If no other drug available... infection cannot be stopped

Viral mutants resistant to every antiviral drug in arsenal

Genetic analysis of resistance provides insight into mechanism, and may reveal new strategies to reduce or circumvent problem

High mutations rates

RNA viruses have an error prone RNA polymerase

no correction mechanism Except one order (Nidovirales)...

One mutation in 10⁴ – 10⁵ nucleotide

in RNA viruses of ~10kb, that makes 1 mutation per 1 to 10 genomes.

DNA virues: most DNA polymerase have proofreading mechanisms Slower evolution

Maths of drug resistance

Consider a unique drug resistance provided by a single mutation

 $\mu = 10^{-4}$ mut/base Each base is substituted in every 10⁴ viruses

Each person has 10⁹⁻10¹¹ virions during pick viremia (SARS-CoV-2)

Sender et al. 2021 PNAS https://doi.org/10.1073/pnas.2024815118

 $\frac{10^{10}}{10^4} = \frac{10^6}{10^6}$ viruses with resistance to the one drug...

$Molnupiravir (Lagevrio^{\mathbb{R}}_{MSD})$

$Molnupiravir (Lagevrio^{\mathbb{R}}_{MSD})$

As soon as possible after diagnosis of COVID, within 5 days of the start of the symptoms, for 5 days

About one month after treatment started 7.3% of patients (28 out of 385) who took Lagevrio compared with 14.1% (53 out of 377) of patients who took placebo (a dummy treatment) had been hospitalised or had died; none of the patients in the Lagevrio group died compared with eight patients in the placebo group.

https://www.ema.europa.eu/en/news/ema-issues-advice-use-lagevrio-molnupiravir-treatment-covid-19

Cytidine

 $Molnupiravir (Lagevrio^{\mathbb{R}})$

Incorporates into replicating RNA

Induces C→U mutations Mutagenic!

Molnupiravir (Lagevrio®_{MSD})

Incorporates into replicating RNA

Induces C→U mutations Mutagenic!

Lethal mutagenesis

"error catastrophe" "mutational meltdown"

$Molnupiravir (Lagevrio^{\mathbb{R}}_{MSD})$

What about low drug concentration?

increase the mutation rate without error catastrophe: sublethal mutagenesis

Peak viral shedding is likely to coincide with low initial drug concentration

Molnupiravir has a short plasma half-life.

1 hour

Sequence content limits mutation rate elevation.

Pre-existing bias for $C \rightarrow U$ mutations genomic G:C content of 38% plus-strand C content of 18%

ViralZone, <u>link</u>

Eradicating SARS-CoV-2

Eradication of infectious diseases

Which characteristics should an infectious disease have to be, potentially, eradicated?

Eradication of infectious diseases

Public health and political motivation

VIREVO virevo.lequimelab.eu